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Abstract

This paper presents an analytical study on thermoelastic damping (TED) in the contour-mode vibrations of micro- and

nano-electromechanical circular thin-plate resonators. Instead of expressing TED in terms of a commonly used complex

frequency value, this work calculates TED by using a thermal-energy approach in which the generation of thermal energy

per cycle of vibration is considered. To demonstrate its validity, this thermal-energy approach is first utilized to tackle the

well-known TED in a flexural-mode beam resonator. Then, it is extended to analyzing TED in the contour-mode

vibrations of a circular thin-plate micro-/nano-resonator. Consequently, the behavior of TED versus the key design

parameters, namely thin-plate radius and resonant frequency, is predicted, and the attainable quality factors of such type

of resonators are defined. From this work, it is found that the QTED of the contour-mode vibrations of a circular thin-plate

resonator is well above 1� 106 when its resonant frequency is below 1GHz and TED becomes a significant source of

dissipation for circular thin-plate resonators at the nanometer scale.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Micro- and nano-electromechanical (MEM/NEM) resonators are of great interests for a wide range of
sensing [1–3] and electrical filtering [4–7] applications. For these applications, it is important to design and
fabricate resonators with very high-quality factors or very little energy dissipation. Owing to its small size, it is
feasible to package a MEM and NEM resonator in vacuum and thereby eliminate air damping. Consequently,
other dissipation mechanisms [8–11], such as thermoelastic damping (TED), support loss, and surface loss,
now come to the fore and become the major bottlenecks for these resonators’ performance. Among the
dissipation mechanisms, TED imposes an upper limit on the attainable quality factor of a MEM and NEM
resonator. It is therefore desirable to accurately predict TED, not only for improving the performance of these
resonators but also for establishing their performance limits.
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Nomenclature

A cross-section area of a beam (mm2)
b beam width (mm)
Cp specific heat (J/kgK)
E Young’s modulus (GPa)
h beam and thin-plate thickness (mm)
I moment of inertia (mm4)
k frequency parameter of the contour-

mode vibrations
kb, xb variables related to thermoelastic damp-

ing in a beam resonator
kp, xp variables related to thermoelastic damp-

ing in a circular thin-plate resonator
L beam length (mm)
m contour-mode order
Q quality factor
DQ generation of thermal energy per cycle of

vibration (J)
r radial variable (mm)
r0 normalized radial variable
R radius of a thin-plate (mm)
s entropy (J/K)
t0 time period of vibration (s)
T0 initial temperature (K)
W maximum stored vibration energy (J)
DW energy dissipated per cycle of vibration

(J)
~u elastic displacement vector (mm)
ur radial displacement (mm)
uy circumferential displacement (mm)
r �~u elastic dilatation
Ub vibration amplitude of a beam (mm)
Up/R vibration amplitude of a thin-plate (mm)

y y-axis variable
y0 normalized y-axis variable
Y0 uncoupled flexural-mode vibration shape
aT linear thermal expansion coefficient

(K�1)
bT2D coefficient for thermal expansion in 2D

cases (Pa/K)
bT3D coefficient for thermal expansion in 3D

cases (Pa/K)
gb mode shape factor of a beam resonator
gp mode shape factor of a circular thin-plate

resonator
DE thermal relaxation strength
y circumferential variable (rad)
Y temperature variation (K)
Ys general solution to the temperature varia-

tion in a circular thin-plate resonator (K)
YT particular solution to the temperature vari-

ation in a circular thin-plate resonator (K)
k thermal conductivity (W/mK)
l2D Lame coefficient in 2D cases (GPa)
l3D Lame coefficient in 3D cases (GPa)
m2D Lame coefficient in 2D cases (GPa)
m3D Lame coefficient in 3D cases (GPa)
P variable for the temperature variation
P1 integral constant related to the general

solution of the temperature variation
P2 integral constant related to the particular

solution of the temperature variation
r density (kg/m3)
S integral constant for the contour mode
u Poisson’s ratio
w thermal diffusivity (m2/s)
o angular resonant frequency (rad/s)
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With the increasing demand of MEM and NEM resonators with very high frequencies and very high-
quality factors, free-edged circular thin-plate resonators operating in their contour-modes have attracted great
attention [12–14], because this type of resonators can achieve high resonant frequencies without the need to
scale the resonator dimensions into the nanometer domain, therefore easing fabrication and reducing surface
loss. Furthermore, by locating a small support beam at the resonant node of a circular thin-plate resonator,
support loss in the resonator is substantially alleviated [12,13,15]. It is well known that TED is significant at
low frequencies of the flexural-mode vibrations of a beam resonator, while it becomes noticeable at extremely
high frequencies of the longitudinal-mode vibrations of a beam (also referred to as block) resonator. Now, the
question arises: how TED behaves in the contour-mode vibrations of a circular thin-plate resonator? This
work addresses this question through utilizing a thermal-energy approach, in which the generation of thermal
energy per cycle of vibration is considered.

This paper is organized as follows. The following section presents the governing equations of linear
thermoelasticity in general. Section 3 presents an overview of two approaches for calculating TED: complex
frequency and thermal energy. Since the thermal-energy approach has not been utilized for analyzing TED in
a mechanical resonator yet, Section 4 is dedicated to demonstrating its validity with the well-known solution
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to TED in a flexural-mode beam resonator. In Section 5, this thermal-energy approach is extended to
analyzing TED in the contour-mode vibrations of a free-edged circular thin-plate resonator. The significant
insights of this work are discussed and concluded at the end.

2. Governing equations of linear thermoelasticity

The laws of thermodynamics predict that variation of strain in a solid is accompanied by a variation of
temperature, which causes an irreversible flow of heat. This heat conduction gives rise to an increase in
entropy, or the generation of thermal energy, and consequently, to dissipation of vibration energy. This
process of energy dissipation is commonly referred to as TED.

Consider a homogenous and isotropic solid medium that is initially at a uniform temperature T0. In the
absence of internal heat source and body force, the governing equations of linear thermoelasticity are written
as [16]

ðlþ 2 � mÞ � rðr �~uÞ � m � r � r �~u� bT � rY ¼ r �
q2~u
qt2

(1a)

and

k � r2Y� Cp � r �
qY
qt
¼ bT � T0 �

q
qt
ðr �~uÞ, (1b)

where k, r, and CP are the thermal conductivity, density, and specific heat of the solid medium, respectively.
While l and m are Lame coefficients, bT is a coefficient related to thermal expansion effect of the solid medium.
In terms of the material properties, these coefficients can be expressed in three-dimensional (3D) cases and
two-dimensional (2D) cases, respectively, as below [16]:

l3D ¼
uE

ð1þ uÞð1� 2uÞ
; m3D ¼

E

2ð1þ uÞ
and bT3D ¼

aT E

1� 2u
(2a)

l2D ¼
uE

1� u2
; m2D ¼

E

2ð1þ uÞ
and bT2D ¼

aT E

1� u
, (2b)

where E, u, and aT are the Young’s modulus, Poisson’s ratio, and linear thermal expansion coefficient of the
solid medium, respectively.

In the above two thermoelastic-coupled governing equations, ~u and Y ¼ T�T0 denote the elastic
displacement vector and the temperature variation from the initial temperature T0, respectively. While the
last term on the left-hand side of the elastic equation (1a) represents the stress caused by the temper-
ature variation in the solid medium, the term on the right-hand side of the heat conduction equation (1b)
represents the temperature variation resulted from the elastic dilatation, which is expressed as r �~u, in
the solid medium. These two terms are the factors coupling the elastic vibrations and the temperature
variation together.

3. Two approaches for calculating TED

Calculating TED is a well-defined problem—solve the two coupled equations for the dissipation of
vibration energy per cycle of vibration. Although the physical mechanism and theory of thermoelasticity have
been well established [16], there are very few analytical solutions to TED in the vibrations of finite geometries,
due to the complexity in mathematical derivation [17]. In the 1930s, Zener [18,19] derived an approximate
solution to TED in flexural-mode beam resonators. His theory showed that TED in a beam exhibits a
Lorentzian behavior with a single thermal relaxation time. A few years ago, Lifshitz and Roukes [9] provided
an exact solution to TED in micro- and nano-mechanical beam resonators, predicting a modified Lorentzian
behavior of TED. Recently, TED in ring resonators was also addressed [20,21].

All the aforementioned works are based on the fundamental assumption that thermoelastic coupling is very
weak and has negligible influence on the uncoupled elastic vibration modes of a mechanical resonator, so the
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elastic and thermal problems are essentially decoupled. Following this assumption, the uncoupled elastic
vibration modes from the elastic equation are further assumed and their corresponding elastic dilatation is
derived. Then, the substitution of the elastic dilatation into the heat conduction equation leads to the
expression for the temperature variation in the resonator. Here, it should be noted that both the elastic
vibrations and the temperature variation are assumed to be time harmonic with the same resonant frequency.
Upon knowing both the elastic dilatation, r �~u, and the temperature variation, Y, two approaches can be
utilized for calculating TED, as described below.

3.1. Complex-frequency approach

In the complex-frequency approach, the effect of TED on the elastic vibrations of a mechanical resonator is
taken into account by expressing the resonant frequency as a complex value:

o ¼ ðor þ oiiÞ with or; oiX0 and i ¼
ffiffiffiffiffiffiffi
�1
p

, (3)

where or is the real value giving the new resonant frequency of the mechanical resonator in the presence of
thermoelastic coupling, while oi is the imaginary value giving the calculation of TED. To obtain the
expression for the complex frequency, the temperature variation is substituted into the coupled elastic
equation (1a) and gives rise to a complex Young’s modulus. Incorporating the complex Young’s modulus into
the equation for the resonant frequency leads to an explicit expression for the complex frequency.
Consequently, in terms of the derived complex frequency, the quality factor related to TED, QTED, can be
calculated as [9]

Q�1TED ¼ 2
ImðoÞ
ReðoÞ

����
����. (4)

By utilizing this complex-frequency approach, the solutions to TED in both beam [9] and ring [20,21]
resonators have been obtained. The details about this approach can be found in the related works [9,20,21]
and therefore are not elaborated here. However, it should be noted that this approach requires substituting the
temperature variation into the coupled elastic equation (1a), in order to obtain a complex Young’s modulus.
This makes it extremely difficult, if not impossible, to solve TED in complex cases, such as the contour-mode
vibrations of a circular thin-plate resonator.

3.2. Thermal-energy approach

In fact, besides interpreted as the dissipation of vibration energy, TED can also be interpreted as the
generation of thermal energy per cycle of vibration, which is the very essence of TED [19]. Therefore, one may
calculate TED by seeking this generation of thermal energy per cycle of vibration. Now, we describe the
procedure of deriving the expression for the generation of thermal energy, in terms of the known elastic
dilatation and temperature variation. It should be emphasized that, in this thermal-energy approach, the
resonant frequency holds a real value and thus is different from that used in the complex-frequency approach.
For simplicity, the elastic dilatation is assumed to have a real value. Then, the temperature variation must
become complex because of thermoelastic coupling.

Owing to heat conduction, the entropy of an infinitesimal element volume in a mechanical resonator, dv,
changes at a rate of [19]

ds

dt
¼

k � r2T

T
dv, (5)

where s is the entropy of the element. The temperature can be represented by T ¼ T0+Y, where the relation
Y5T0 exists, because the temperature variation due to thermoelastic coupling is very small. By using Taylor-
series expansion and neglecting the higher-order expansion terms, Eq. (5) can be rewritten as

ds

dt
¼ 1�

Y
T0

� �
k � r2Y

T0
dv. (6)
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Then, substituting Eq. (1b) into Eq. (6) leads to the following relation:

ds

dt
¼ 1�

Y
T0

� �
rCP

T0

qY
qt
þ

bT T0

rCp

q
qt
ðr �~uÞ

� �
dv. (7)

According to the definition of entropy [22], the thermal energy generated by irreversible heat conduction is
written as

dQ ¼ T0 ds, (8)

where the relation Y5T0 has been applied. Substituting Eq. (7) into Eq. (8) and integrating the later equation
over one time period of vibration, t0, and across the whole volume of a mechanical resonator gives rise to the
expression for the generation of thermal energy per cycle of vibration:

DQ ¼ rCP

Z t0

0

Z V

0

1�
Y
T0

� �
qY
qt
þ

bT T0

rCp

q
qt
ðr �~uÞ

� �
dvdt. (9)

As mentioned previously, both the elastic dilatation and the temperature variation are time harmonic with
the same real resonant frequency, �eiot, but the elastic dilatation has a real value and the temperature
variation is complex. For this reason, Eq. (9) can be rewritten as

DQ ¼ �bT

Z t0

0

Z V

0

Y
q
qt
ðr �~uÞdvdt. (10)

The integral in Eq. (10) can easily be solved in mathematical software, such as Matlab. The real part of the
above expression, Re(DQ), is equal to the generation of thermal energy per cycle of vibration, or thermoelasic
damping, DW. In turn, this suggests that the imaginary part of the temperature variation is out of phase with
the elastic dilatation and contributes to TED, since the derivative of the elastic dilatation (�eiot) with respect
to time is a pure imaginary value.

Based on the definition of the mechanical quality factor [23]

Q ¼ 2p
W

DW
, (11)

where DW denotes the energy dissipated per cycle of vibration and W denotes the stored maximum vibration
energy in a mechanical resonator, substituting the real part of Eq. (10) into Eq. (11) gives rise to the
calculation of QTED. To the author’s knowledge, this thermal-energy approach has so far not been utilized for
analyzing TED in a mechanical resonator. Therefore, Section 4 is dedicated to demonstrating its validity with
the well-known solution to TED in a flexural-mode beam resonator.

4. TED in the flexural-mode vibrations of a beam resonator

In Section 4, we briefly review uncoupled elastic vibrations and heat conduction in a flexural-mode beam
resonator and describe how the elastic dilatation and the temperature variation can be combined to obtain the
solution to TED.

4.1. Elastic dilatation in the uncoupled elastic vibrations

Fig. 1 shows a schematic view of a beam resonator. The length, width, and thickness of the beam are
denoted by L, b, and h, respectively. For simplicity, it is assumed that the ratio of the beam length to the beam
width is larger than 20 (L/b420), so that the Euler–Bernoulli beam theory can be used for the related
vibration analysis [24]. Being clamped at one end or at both ends, this beam vibrates in its x– y plane flexural
mode, and the governing equation for its elastic vibrations is written as [8]

q4Y

qx4
¼ �

rA

EI

q2Y

qt2
, (12)

where I ¼ b3h=12 and A ¼ bh are the moment of inertia and the cross-section area of the beam, respectively.
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Fig. 1. Schematic view of a beam resonator and its associated coordinates.
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The beam resonator undergoes time-harmonic vibrations, Y0yejot, with the resonant frequency, o,
expressed as below:

o ¼
p2b2

L2

ffiffiffiffiffiffiffi
EI

rA

s
, (13)

where b denotes the mode constant. The uncoupled flexural-mode vibration shape is expressed as [8]

Y 0 ¼
Ub

2
cosh bp

x

L

� 	
� cos bp

x

L

� 	
þ gb sinh bp

x

L

� 	
� sin bp

x

L

� 	� 	n o
, (14)

where constants gb and Ub denote the made shape factor and the vibration amplitude, respectively. The stored
maximum vibration energy in the beam resonator is calculated as [8]

W ¼ 1
8
rALo2U2

b. (15)

The elastic dilation due to the uncoupled flexural-mode elastic vibrations and the temperature variation is
expressed as [9]

r �~u ¼ ð2u� 1Þy
d2Y 0

dx2
eiot þ 2ð1þ uÞaTY. (16)

Compared with its first term, the second term of the elastic dilatation in Eq. (16) has negligible effect on heat
conduction [9] and therefore will be omitted in the following heat conduction analysis.
4.2. Temperature variation due to the elastic dilatation

Owing to the high ratio of the beam length to the beam width (L/b420), the temperature gradient along the
beam length is much smaller than that across the beam width. Thus, heat conduction in the beam is assumed
to occur only along the y-axis direction. Accordingly, the heat conduction equation (1b) can be simplified as

w
q2Y
qy2
�

qY
qt
¼

bT3DT0

rCP

q
qt
ðr �~uÞ. (17)

The temperature variation is assumed to be time harmonic with the same frequency as the elastic vibrations,
Y ¼ Y0ðxÞe

iot. With the aid of Eq. (16), Eq. (17) can be rewritten as

q2Y0

qy2
þ

o
iw
Y0 ¼

o
iw
DE

aT

y
d2Y 0

dx2
, (18)

where DE ¼ Ea2T T0=rCp is the thermal relaxation strength that is related to the material properties and the
initial temperature. The solution to Eq. (18) can be written as below:

Y0 ¼ B1 sinðkbyÞ þ B2 cosðkbyÞ þ
DE

aT

y
d2Y 0

dx2
, (19)
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where B1 and B2 are two constants; and

kb ¼

ffiffiffiffi
o
iw

r
¼ ð1� iÞ

xb

b
with xb ¼ b

ffiffiffiffiffi
o
2w

r
and i ¼

ffiffiffiffiffiffiffi
�1
p

. (20)

Applying the adiabatic boundary condition at the boundaries of y ¼7b/2 to Eq. (19) leads to the explicit
expression for the temperature variation across the beam width:

Y0 ¼
DE

aT

d2Y 0

dx2
b

y

b
�

sinðkbyÞ

kbb cosðkbb=2Þ

� �
. (21)

Because of the complex expression for kb in Eq. (20), the temperature variation in Eq. (21) is complex. While its
real part is in phase with the elastic vibrations, the imaginary part of the temperature variation is out of phase with
the elastic vibrations and causes TED. Furthermore, the first term of the temperature variation is the particular
solution corresponding to the elastic dilatation and its second term is the general solution resulting from heat
conduction. The temperature variation from the elastic dilatation holds a real value and therefore does not
contribute to TED. In contrast, the temperature variation from the general solution is complex, indicating that
part of its heat conduction is irreversible and causes TED. Fig. 2 illustrates the behavior of the real and imaginary
parts of the general solution and the particular solution as functions of the beam width, b, and the variable, xb.

4.3. Solution to TED

The elastic dilatation, Eq. (16), and the temperature variation, Eq. (21), are substituted into Eq. (10), giving
rise to the following expression:

DQ ¼ �
k

T0w
DE

aT

� �2

piIL
bp
L

� �4
Ub

2

� �2

1�
24

b3k3
b

ðtanðkbb=2Þ � kbb=2Þ

" #
, (22)

where

1�
24

ðkbbÞ3
ðtanðkbb=2Þ � kbb=2Þ ¼ 1�

6

x3b

sinhðxbÞ � sinðxbÞ

cosðxbÞ þ coshðxbÞ
�

6

x3b
xb �

sinðxbÞ þ sinhðxbÞ

cosðxbÞ þ coshðxbÞ

� �
i. (23)

Corresponding to the imaginary part of the temperature variation, the real part of Eq. (22) is equal to the
generation of thermal energy per cycle of vibration:

ReðDQÞ ¼
k

T0w
DE

aT

� �2

pIL
bp
L

� �4
Ub

2

� �2
6

x3b
xb �

sinhðxbÞ þ sinðxbÞ

coshðxbÞ þ cosðxbÞ

� �
. (24)

The combination of Eqs. (11), (15), and (24) leads to the explicit expression for the QTED of the flexural-mode
vibrations of a rectangular beam resonator:

Q�1TED ¼ DE

6

x2b
�

6

x3b

sinhðxbÞ þ sinðxbÞ

coshðxbÞ þ cosðxbÞ

" #
. (25)

This solution to TED in a flexural-mode beam resonator is exactly the same as that obtained through the
complex-frequency approach [9]. Therefore, the validity of the thermal-energy approach is demonstrated.

5. TED in the contour-mode vibrations of a circular thin-plate resonator

Section 5 focuses upon solving TED in the contour-mode vibrations of a circular thin-plate resonator by
using the above verified thermal-energy approach. Fig. 3 illustrates a schematic view of a circular thin-plate
resonator with its polar coordinates ðr; yÞ originated at the center of the thin plate. This resonator has a radius
of R and is initially at a uniform temperature T0. It is assumed that the circular thin-plate resonator is free
edged [12], homogeneous, isotropic, and in the case of 2D plane stress; and thus the elastic vibrations and the
temperature variation are independent of its thickness, h.
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Fig. 2. The behavior of the temperature variation across the beam width at different values of the variable, xb: (a) real part of the general

solution, (b) imaginary part of the general solution, and (c) particular solution. Note: y is normalized to the beam width: y0 ¼ y=b,

xb 2 ð0:1; 4Þ, and Y00 ¼ Y0=ððDE=aT Þðd
2Y=dx2ÞbÞ.
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5.1. Elastic dilatation in the uncoupled contour-mode elastic vibrations

According to Eq. (1a), in the absence of thermoelastic coupling, the governing equations for the contour-
mode vibrations in a circular thin-plate resonator are written as [12]

l2D þ 2m2D

 �

� rðr �~uÞ � m2D � r � r �~u ¼ r �
q2~u
qt2

, (26)
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o

R

�

Free edge

r

Fig. 3. Schematic view of a free-edged circular thin-plate resonator with the thickness, h.
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where the displacement vector ~u is defined in terms of the radial displacement, ur, and circumferential
displacement, uy, respectively, expressed as below:

~u ¼ ur �~rþ uy �
~y. (27)

When this resonator goes through time-harmonic vibrations, we can assume

ur ¼ ur0e
iot and uy ¼ uy0e

iot, (28)

where o denotes the resonant frequency of the contour-mode vibrations. The resonant frequency of the mth
order contour-mode vibrations is expressed as

o ¼
k

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

rð1� u2Þ

s
, (29)

where k is the frequency number for the mth order contour-mode. For simplicity, the subscript, m, is omitted
for the constants related to the mth order.

With the aid of the free-edged boundary condition, the mth-order contour-mode vibrations of a circular
thin-plate resonator can be expressed as [12]

ur0 ¼
Up

R
kJm�1ðkr0Þ �

m

r0
Jmðkr0Þ þ

m

r0
gpJmðhr0Þ

h i
cosðmyÞ (30a)

and

uy0 ¼
Up

R

�m

r0
Jmðkr0Þ � gp hJm�1ðhr0Þ �

m

r0
Jmðhr0Þ

� 	h i
sinðmyÞ, (30b)

where h ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ð1� uÞ

p
, J is the Bessel function of the first kind, gp is the contour-mode shape factor, and

r0 ¼ r=R denotes the dimensionless radial coordinate, which is normalized to the radius of the thin plate. With
Up having the unit of mm2, Up/R denotes the vibration amplitude of the mth contour-mode vibrations. Only
the modes for which mX2 are considered here, as these modes have resonant nodes at the edge of a thin plate
for locating a support beam [12]. To illustrate the contour-mode vibration behavior, the 2nd, 3rd, and 4th
contour-mode shapes are depicted in Fig. 4. The contour-mode vibrations consist of the motion along both
the radial and circumferential directions and thus are 2D. The stored maximum vibration energy of the
contour-mode vibrations is written as [12]

W ¼
p
2
rho2U2

pS, (31)
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Fig. 4. Contour-mode vibration shapes with triangles symbolizing the vibration modes: (a) m ¼ 2, (b) m ¼ 3, and (c) m ¼ 4.

Table 1

Physical properties of three typical structural materials for micro- and nano-electromechanical resonators

Materials Silicon /1 1 0S
[12]

Silicon /1 0 0S
[9]

Polysilicon [25] Polydiamond

[26,27]

Poisson’s ratio 0.064 0.28 0.22 0.12

Young’s modulus (GPa) 169 130 157 1120

Density (kg/m3) 2330 2330 2330 3440

Thermal conductivity (W/mK) 90 90 90 1400

Specific heat (J/kgK) 700 700 700 565

Linear thermal expansion coefficient (K�1) 2.6� 10�6 2.6� 10�6 2.6� 10�6 1.0� 10�6

Z. Hao / Journal of Sound and Vibration 313 (2008) 77–9686
where

S ¼
Z 1

0

kJm�1ðkr0Þ �
m

r0
Jmðkr0Þ þ

m

r0
gpJmðhr0Þ

h i2
þ
�m

r0
Jmðkr0Þ � gp hJm�1ðhr0Þ �

m

r0
Jmðhr0Þ

� 	h i2� �
r0 dr0

is an integral constant related to the mth contour mode.
While Table 1 lists the mechanical properties of three typical structural materials used in fabri-

cation of MEM and NEM resonators, Table 2 summarizes the constants related to the contour-
mode vibrations of circular thin-plate resonators made from these materials. Since the anisotropy of
silicon has negligible effect only on the 2nd contour-mode [12], the mechanical properties of single
crystal silicon along both the /1 1 0S and /1 0 0S orientations are used only for this mode and are included in
Table 2(a).

Consisting of the strain resulting from normal stress and thermal strain arising from the temperature
variation, the total normal strains toward the radial, circumferential, and thin-plate thickness directions, take
the following forms, respectively:

�rr ¼
1

E
ðsrr � usyyÞ þ aTY, (32a)

�yy ¼
1

E
ðsyy � usrrÞ þ aTY, (32b)

�zz ¼ �
u
E
ðsrr þ syyÞ þ aTY. (32c)
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Table 2

The related contour-mode constants for a free-edged circular thin-plate resonator

Silicon /1 0 0S Silicon /1 1 0S Polysilicon Polydiamond

(a) m ¼ 2

Frequency number (k) 1.4073 1.6002 1.4638 1.5528

Mode shape (g) �2.1943 �2.1981 �2.2268 �2.2215

Integral constant for vibration energy (S) 1.1651 1.0294 1.1664 1.0939

Polysilicon Polydiamond

(b) m ¼ 3

Frequency number (k) 2.2422 2.3703

Mode shape (g) �1.1161 �1.1598

Integral constant for vibration energy (S) 0.3264 0.3188

(c) m ¼ 4

Frequency number (k) 2.9139 3.0712

Mode shape (g) �0.7088 �0.7723

Integral constant for vibration energy (S) 0.1379 0.1450
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Substituting Eqs. (32a) and (32b) into Eq. (32c) leads to the following expression:

�zz ¼ �
u

ð1� uÞ
ð�rr þ �yyÞ þ

2u
1� u

aTY. (32d)

According to the contour-mode vibrations, Eqs. (30), the following expression exists for the mth
contour mode:

�rr þ �yy ¼ �k2Jmðkr0Þ
Up cosðmyÞ

R2
eiot. (33)

Therefore, the elastic dilatation due to the contour-mode vibrations and the temperature variation is written as

r �~u ¼ �
1� 2u
1� u

k2 Up

R2
Jmðkr0Þ cosðmyÞeiot þ

2u
1� u

aTY. (34)

Owing to its negligible effect, the second term in Eq. (36) will be omitted for the following heat conduction
analysis. Fig. 5 illustrates the elastic dilatation amplitude distribution across a circular thin-plate resonator at
different contour-mode orders.
5.2. Temperature variation due to the elastic dilatation

With the assumption that the temperature variation is time harmonic, Y ¼ Y0ðxÞe
iot, and the aid of

Eq. (34), the heat conduction equation Eq. (1b) can be rewritten as

r2Y0 þ
o
iw
Y0 ¼

bT2DT0o
ik

1� 2u
1� u

k2 Up

R2
Jmðkr0Þ cosðmyÞ

� �
. (35)

The solution to Eq. (35) consists of a general solution, YT, and a particular solution, Ys, expressed as below:

Y0 ¼ YT þYS, (36)

where

YT ¼ YT0Jmðkpr0Þ cosðmyÞ (37a)
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Fig. 5. The elastic dilatation amplitude across a circular thin-plate in the rectangular coordinate (x–y plane) at different contour-modes:

(a) m ¼ 2, (b) m ¼ 3, and (c) m ¼ 4. Note: Polysilicon is assumed as the structural material; the dilatation amplitude is drawn using the first

term of Eq. (34), with U/R2
¼ 1.
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and

Ys ¼ P
Up

R2
Jmðkr0Þ cosðmyÞ. (37b)

In the above expression, both kp and P are complex and are expressed, respectively, as below:

kp ¼ ð1� iÞ

ffiffiffiffiffi
o
2w

r
R ¼ ð1� iÞxp with xp ¼

ffiffiffiffiffi
o
2w

r
R, (38)
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P ¼
4x4p þ 2x2pk2i

k4
þ 4x4p

�
DEð1� 2uÞ

aT ð1� uÞ2
k2. (39)

Based on the adiabatic boundary condition at the edge of the thin plate:

qYT

qr0

����
r0¼1

¼ �
qYs

qr0

����
r0¼1

, (40)

the amplitude, YT0, of the temperature variation in the general solution can be expressed in terms of the mth
contour-mode vibration amplitude:

YT0 ¼ �P
Up

R2

kJm�1ðkÞ �mJmðkÞ

kpJm�1ðkpÞ �mJmðkpÞ
. (41)

By substituting Eq. (41) into Eq. (37a), the temperature vibration in the thin plate, Eq. (36), takes the
following format:

Y0 ¼ �P
Up

R2

kJm�1ðkÞ �mJmðkÞ

kpJm�1ðkpÞ �mJmðkpÞ
Jmðkpr0Þ cosðmyÞ þP

Up

R2
Jmðkr0Þ cosðmyÞ. (42)

Fig. 6 illustrates the behavior of the imaginary parts of the first term (from the general solution), the second
term (from the particular solution) and their total in Eq. (42) versus the radius and the variable, xp, at different
contour-mode orders, with cos(my) ¼ 1. It is interesting to note that, in the contour-mode vibrations, the
particular solution and the general solution of the temperature variation are both complex and thus contribute
to TED. This is different from TED in a flexural-mode beam resonator, in that the particular solution to the
temperature variation of a beam resonator is real and does not cause any TED. The complexity of the above
expression for the temperature variation makes it unpractical to utilize the complex-frequency approach for
calculating TED. In contrast, it will be much easier to calculate TED using the thermal-energy approach, as
described in Section 5.3.
5.3. Solution to TED

The substitution of the elastic dilatation, Eq. (34), and the temperature variation, Eq. (42), into
Eq. (10) leads to the following expression for the generation of thermal energy in the mth contour-mode
vibrations:

DQ ¼ bT2Dip
2h

U2
p

R2
k2 1� 2u

1� u
P

kJm�1ðkÞ �mJmðkÞ

kpJm�1ðkpÞ �mJmðkpÞ
P1 �P2

� �
, (43)

where

P1 ¼

Z 1

0

Jmðkpr0ÞJmðkr0Þr0 dr0 ¼
1

k2
p � k2

½kJm�1ðkÞJmðkpÞ � kp � Jm�1ðkpÞJmðkÞ� (44a)

and

P2 ¼

Z 1

0

Jmðkr0Þ2r0 dr0 ¼
1

2
½JmðkÞ

2
� Jm�1ðkÞJmþ1ðkÞ�. (44b)

Then, the calculated thermal energy, Eq. (43), and the stored maximum vibration energy, Eq. (31), are
substituted into the definition of the mechanical quality factor, leading to the expression for the QTED of the
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mth contour-mode vibrations of a circular thin-plate resonator:

Q�1TED ¼
ð1� 2uÞ2ð1þ uÞ

ð1� uÞ3
DEk2

S
ReðCÞ, (45)

where

C ¼
4x4pi� 2x2pk2

k4
þ 4x4p

kJm�1ðkÞ �mJmðkÞ

kpJm�1ðkpÞ �mJmðkpÞ
P1 �

4x4pi� 2x2pk2

k4
þ 4x4p

P2. (46)
Fig. 6. The behavior of the imaginary parts of the first term, the second term, and their total of the temperature variation in Eq. (42)

versus the radius and the variable, xp, at different contour-mode orders (assuming that U/R2
¼ 1/100, and cos(my) ¼ 1): (a) m ¼ 2,

(b) m ¼ 3, and (c) m ¼ 4. Note: Polysilicon is assumed as the structural material.
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Fig. 6. (Continued)
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Fig. 7 illustrates the behavior of the real parts from the first term (corresponding to the general solution),
the second term (corresponding to the particular solution), and their total in Eq. (46) versus the variable, xp.
From this figure, it is found that the value for xpmax, at which maximum TED occurs, varies with the contour-
mode orders. This is different from TED in a flexural-mode beam resonator, where maximum TED occurs at
the value of xbmaxffi2.225, regardless of its flexural-mode orders [9].

6. Discussion

In practice, the main concern of TED is its dependence on the radius and resonant frequency of a circular
thin-plate resonator. Therefore, Figs. 8 and 9 illustrate the behavior of thermeoalstic damping versus the
variable, xp, thin-plate radius, and resonant frequency of circular thin-plate resonators made from polysilicon
and polydiamond, respectively. It becomes clear that both the QTED value of a thin-plate resonator of the
same radius and the minimum QTED decrease with the increasing contour-mode orders. From these figures, it
is further found that the minimum QTED of the contour-mode vibrations occurs at the resonant frequency as
high as a few tens of gigahertz, or alternately at the radius of 40–400 nm. This indicates that TED becomes a
significant source of dissipation for circular thin-plate resonators at the nanometer scale. For a circular thin-
plate resonator with a resonant frequency below 1GHz, its QTED is well above 1� 106. Table 3 summarizes
the minimum values of QTED and their corresponding frequencies and radii for the structural materials listed
in Table 1.

This paragraph addresses the difference in TED between the flexural-mode vibrations of a beam resonator
and the contour-mode vibrations of a circular thin-plate resonator. For a flexural-mode beam resonator, the
particular solution to the temperature variation, the last term on the right-hand side of Eq. (19), is a linear
function of the variable, y. Therefore, based on Eq. (5), the entropy change (q2Y0=qy2) caused by the
particular solution is zero. For this reason, the particular solution to the temperature variation does not
contribute to TED. This may explain the observation that the value of xbmax does not vary with the flexural-
mode orders of a beam resonator. On the contrary, for a circular thin-plate resonator, the particular solution
to the temperature variation, the second term on the right-hand side of Eq. (42), is a complicate function of the
variables of r0 and y, and at the same time, has a complex amplitude (due to the time-harmonic assumption of
heat conduction). Hence, the entropy change (r2Y0) caused by the particular solution is non-zero, indicating
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Fig. 7. The behavior of the real parts of the first term, the second term, and their total in Eq. (46) versus the variable, xp, at different

contour-mode orders: (a) m ¼ 2, (b) m ¼ 3, and (c) m ¼ 4. Note: Polysilicon is assumed as the structural material. Particular,

general, —— total.
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that the particular solution to the temperature variation is not completely in phase with the elastic dilatation
and contributes to TED. Moreover, as illustrated in Figs. 7–9, the contribution of the particular solution to
TED manifests itself by varying the value of xpmax and maximum TED with the contour-mode orders, because
the particular solution to the temperature variation corresponds to the elastic dilatation at different contour-
mode orders. At last, it is worth mentioning that maximum TED occurs at extremely high frequencies of the
contour-mode vibrations of a circular thin-plate resonator, as compared with its counterpart in a flexural-
mode beam resonator.
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Fig. 8. The behavior of the QTED of a polysilicon thin-plate resonator versus (a) the variable, xp, (b) thin-plate radius, R, and (c) the

resonant frequency, o/2p. m ¼ 4, m ¼ 3, —— m ¼ 2.
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7. Conclusion

In this paper, a thermal-energy approach for calculating TED has been presented and verified by the well-
known solution to TED in a flexural-mode beam resonator. By using this approach, TED in the contour-mode
vibrations of a free-edged circular thin-plate resonator is predicted. The dependence of the QTED on the thin-
plate radius, resonant frequency, and contour-mode orders is investigated. This work has established that the
QTED of a circular thin-plate resonator is well above 1� 106 when its resonant frequency is below 1GHz; and
TED becomes a significant source of dissipation for circular thin-plate resonators at the nanometer scale.
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Fig. 9. The behavior of the QTED of a polydiamond thin-plate resonator versus (a) the variable, xp, (b) thin-plate radius, R, and (c) the

resonant frequency, o/2p. m ¼ 4, m ¼ 3, —— m ¼ 2.
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Throughout this paper, the continuum theory of elasticity is assumed to analyze the behavior of thin-plate
resonators at the nanoscale, where atomic-level in-homogeneities come to the fore. It has been demonstrated
[28] that the traditional continuum theory breaks down at the nanometer scale and, however, the elasticity of
nanoscale structures might be modified by atomic-level elasticity, in terms of physical observables, correctly
summed to give exact overall elastic response. Accordingly, either the results of our analysis might be still valid
but need modified elasticity at nanoscale, or a completely new theory at atomic-level might be required to
describe TED in circular thin-plate resonators at the nanometer scale.
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Table 3

The minimum values of QTED and their corresponding frequencies and radii for the contour-mode vibrations in circular thin-plate

resonators

Silicon /1 0 0S Silicon /1 1 0S Polysilicon Polydiamond

DE 1.616� 10�4 2.101� 10�4 1.952� 10�4 1.729� 10�4

m ¼ 2 (xpmax ¼ 2.2)

Minimum QTED 3.668� 106 3.880� 105 1.605� 106 7.358� 105

Frequency (GHz) 35.7 55.6 45.2 18.2

Radius (nm) 48 39 43 247

m ¼ 3 (xpmax ¼ 3.0)

Minimum QTED 4.240� 105 1.900� 105

Frequency (GHz) 57.0 22.8

Radius (nm) 53 301

m ¼ 4 (xpmax ¼ 3.8)

Minimum QTED 2.574� 105 1.168� 105

Frequency (GHz) 60.1 23.8

Radius (nm) 65 373
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